"); //-->
「但我已经老了,我所希望的是像你们这样的年轻有为的研究人员,去想出我们如何能够拥有这些超级智能,使我们的生活变得更好,而不是被它们控制。」
6 月 10 日,在 2023 北京智源大会的闭幕式演讲中,在谈到如何防止超级智能欺骗、控制人类的话题时,今年 75 岁的图灵奖得主 Geoffrey Hinton 不无感慨地说道。
Hinton 本次的演讲题目为「通往智能的两种道路」(Two Paths to Intelligence),即以数字形式执行的不朽计算和依赖于硬件的可朽计算,它们的代表分别是数字计算机和人类大脑。演讲最后,他重点谈到了大型语言模型(LLM)为他带来的对超级智能威胁的担忧,对于这个涉及人类文明未来的主题,他非常直白地展现了自己的悲观态度。
演讲一开始,Hinton 便宣称,超级智能(superintelligence)诞生的时间可能会比他曾经想象的早得多。这一观察引出了两大问题:(1)人工神经网络的智能水平将会很快超越真实神经网络吗?(2)人类是否能保证对超级 AI 的控制?在大会演讲中,他详细讨论了第一个问题;针对第二个问题,Hinton 在演讲的最后表示:超级智能可能将很快到来。
首先,让我们来看看传统的计算方式。计算机的设计原则是要能精准地执行指令,也就是说如果我们在不同的硬件上运行相同的程序(不管是不是神经网络),那么效果应该是一样的。这就意味着程序中包含的知识(如神经网络的权重)是不朽的,与具体的硬件没有关系。
为了实现知识的不朽,我们的做法是以高功率运行晶体管,使其能以数字化(digital)的方式可靠运行。但这样做的同时,我们就相当于抛弃了硬件其它一些性质,比如丰富的模拟性(analog)和高度的可变性。
传统计算机之所以采用那样的设计模式,是因为传统计算运行的程序都是人类编写的。现在随着机器学习技术的发展,计算机有了另一种获取程序和任务目标的方法:基于样本的学习。
这种新范式让我们可以放弃之前计算机系统设计的一项最基本原则,即软件设计与硬件分离;转而进行软件与硬件的协同设计。
软硬件分离设计的优点是能将同一程序运行在许多不同的硬件上,同时我们在设计程序时也能只看软件,不管硬件 —— 这也是计算机科学系与电子工程系能够分开设立的原因。
而对于软硬件协同设计,Hinton 提出了一个新概念:Mortal Computation。对应于前面提到不朽形式的软件,我们这里将其译为「可朽计算」。
可朽计算是什么?
可朽计算放弃了可在不同硬件上运行同一软件的不朽性,转而采纳了新的设计思路:知识与硬件的具体物理细节密不可分。这种新思路自然也有优有劣。其中主要的优势包括节省能源和低硬件成本。
在节能方面可以参考人脑,人脑就是一种典型的可朽计算装置。虽然人脑中也依然有一个比特的数字计算,即神经元要么****要么不****,但整体来说,人脑的绝大多数计算都是模拟计算,功耗非常低。
可朽计算也可以使用更低成本的硬件。相较于现如今以二维模式高精度生产的处理器,可朽计算的硬件能以三维模式「生长」出来,因为我们不需要明确知道硬件的连接方式以及每个部件的确切功能。很显然,为了实现计算硬件的「生长」,我们需要很多新型纳米技术或对生物神经元进行基因改造的能力。改造生物神经元的方法可能更容易实现,因为我们已经知道生物神经元大致能够完成我们想要的任务。
为了展示模拟计算的高效能力,Hinton 给出了一个示例:计算一个神经活动向量与一个权重矩阵的积(神经网络的大部分工作都是此类计算)。
对于该任务,当前计算机的做法是使用高功耗的晶体管将数值表示成数字化的比特形式,然后执行 O (n²) 数字运算将两个 n 比特的数值相乘。虽然这只是计算机上的单个运算,但却是 n² 个比特的运算。
而如果使用模拟计算呢?我们可以将神经活动视为电压,将权重视为电导;那么每一单位时间里,电压乘以电导可得到电荷,电荷可以叠加。这种工作方式的能效会高很多,而且其实现在已经存在这样工作的芯片了。但很不幸,Hinton 表示,现在人们还是要使用非常昂贵的转换器将模拟形式的结果转换成数字形式。他希望以后我们能在模拟领域完成整个计算过程。
可朽计算也面临着一些问题,其中最主要的是难以保证结果的一致性,即在不同硬件上的计算结果可能会有所差别。另外,在反向传播不可用的情况下,我们还需要找到新方法。
*博客内容为网友个人发布,仅代表博主个人观点,如有侵权请联系工作人员删除。